Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.109
Filtrar
1.
Med Oncol ; 41(6): 127, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656354

RESUMEN

Chimeric Antigen Receptor (CAR) based therapies are becoming increasingly important in treating patients. CAR-T cells have been shown to be highly effective in the treatment of hematological malignancies. However, harmful therapeutic barriers have been identified, such as the potential for graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome (CRS). As a result, CAR NK-cell therapy is expected to be a new therapeutic option. NK cells act as cytotoxic lymphocytes, supporting the innate immune response against autoimmune diseases and cancer cells by precisely detecting and eliminating malignant cells. Genetic modification of these cells provides a dual approach to the treatment of AD and cancer. It can be used through both CAR-independent and CAR-dependent mechanisms. The use of CAR-based cell therapies has been successful in treating cancer patients, leading to further investigation of this innovative treatment for alternative diseases, including AD. The complementary roles of CAR T and CAR NK cells have stimulated exploration in this area. Our study examines the latest research on the therapeutic effectiveness of these cells in treating both cancer and ADs.


Asunto(s)
Enfermedades Autoinmunes , Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/trasplante , Receptores Quiméricos de Antígenos/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/inmunología , Inmunoterapia Adoptiva/métodos , Animales
2.
Rinsho Ketsueki ; 65(3): 180-182, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38569863

RESUMEN

Relapse or progressive disease after chimeric antigen receptor T-cell (CAR-T) treatment remains a major issue for poor-risk aggressive large B-cell lymphoma. However, limited data are available on post-CAR-T use of polatuzumab vedotin. Here we describe the case of a patient with diffuse large B-cell lymphoma (DLBCL) who experienced relapse three months after CD19-directed CAR-T therapy with tisagenlecleucel. However, the relapsed lesions rapidly disappeared following treatment with polatuzumab vedotin and rituximab. Notably, long-term remission was achieved without severe cytopenia, infections or peripheral neuropathy, showing the therapeutic benefit of polatuzumab vedotin for CAR-T failure.


Asunto(s)
Inmunoconjugados , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Rituximab/uso terapéutico , Anticuerpos Monoclonales , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Enfermedad Crónica , Protocolos de Quimioterapia Combinada Antineoplásica
3.
J Transl Med ; 22(1): 368, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637886

RESUMEN

In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Carcinoma de Células Renales/terapia , Linfocitos T , Línea Celular Tumoral , Neoplasias Renales/terapia , Inmunoterapia Adoptiva , Ensayos Antitumor por Modelo de Xenoinjerto , Ligando CD27
4.
Cell Rep ; 43(4): 114065, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578828

RESUMEN

Epigenetic modification shapes differentiation trajectory and regulates the exhaustion state of chimeric antigen receptor T (CAR-T) cells. Limited efficacy induced by terminal exhaustion closely ties with intrinsic transcriptional regulation. However, the comprehensive regulatory mechanisms remain largely elusive. Here, we identify class I histone deacetylase inhibitors (HDACi) as boosters of CAR-T cell function by high-throughput screening of chromatin-modifying drugs, in which M344 and chidamide enhance memory maintenance and resistance to exhaustion of CAR-T cells that induce sustained antitumor efficacy both in vitro and in vivo. Mechanistically, HDACi decrease HDAC1 expression and enhance H3K27ac activity. Multi-omics analyses from RNA-seq, ATAC-seq, and H3K27ac CUT&Tag-seq show that HDACi upregulate expression of TCF4, LEF1, and CTNNB1, which subsequently activate the canonical Wnt/ß-catenin pathway. Collectively, our findings elucidate the functional roles of class I HDACi in enhancing CAR-T cell function, which provides the basis and therapeutic targets for synergic combination of CAR-T cell therapy and HDACi treatment.


Asunto(s)
Aminopiridinas , Inhibidores de Histona Desacetilasas , Vía de Señalización Wnt , Inhibidores de Histona Desacetilasas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Animales , Humanos , Ratones , Benzamidas/farmacología , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Histona Desacetilasa 1/metabolismo
5.
Cancer Immunol Immunother ; 73(6): 98, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619641

RESUMEN

CAR-T-cell therapy has shown promise in treating hematological malignancies but faces challenges in treating solid tumors due to impaired T-cell function in the tumor microenvironment. To provide optimal T-cell activation, we developed a B7 homolog 3 protein (B7H3)-targeting CAR construct consisting of three activation signals: CD3ζ (signal 1), 41BB (signal 2), and the interleukin 7 receptor alpha (IL7Rα) cytoplasmic domain (signal 3). We generated B7H3 CAR-T cells with different lengths of the IL7Rα cytoplasmic domain, including the full length (IL7R-L), intermediate length (IL7R-M), and short length (IL7R-S) domains, and evaluated their functionality in vitro and in vivo. All the B7H3-IL7Rα CAR-T cells exhibited a less differentiated phenotype and effectively eliminated B7H3-positive glioblastoma in vitro. Superiority was found in B7H3 CAR-T cells contained the short length of the IL7Rα cytoplasmic domain. Integration of the IL7R-S cytoplasmic domain maintained pSTAT5 activation and increased T-cell proliferation while reducing activation-induced cell death. Moreover, RNA-sequencing analysis of B7H3-IL7R-S CAR-T cells after coculture with a glioblastoma cell line revealed downregulation of proapoptotic genes and upregulation of genes associated with T-cell proliferation compared with those in 2nd generation B7H3 CAR-T cells. In animal models, compared with conventional CAR-T cells, B7H3-IL7R-S CAR-T cells suppressed tumor growth and prolonged overall survival. Our study demonstrated the therapeutic potential of IL7Rα-incorporating CAR-T cells for glioblastoma treatment, suggesting a promising strategy for augmenting the effectiveness of CAR-T cell therapy.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Animales , Glioblastoma/terapia , Receptores Quiméricos de Antígenos/genética , Receptores de Interleucina-7/genética , Transducción de Señal , Linfocitos T , Microambiente Tumoral , Humanos
6.
Cancer Immunol Immunother ; 73(6): 104, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630258

RESUMEN

Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We present a retrospective study of 67 patients with R/R B-ALL who received anti-CD19 CAR T-cell therapy, 41 (61.2%) patients received G-CSF (G-CSF group), while 26 (38.8%) did not (non-G-CSF group). Patients had similar duration of grade 3-4 neutropenia between the two groups. The incidences of CRS and NEs were higher in G-CSF group, while no differences in severity were found. Further stratified analysis showed that the incidence and severity of CRS were not associated with G-CSF administration in patients with low bone marrow (BM) tumor burden. None of the patients with low BM tumor burden developed NEs. However, there was a significant increase in the incidence of CRS after G-CSF administration in patients with high BM tumor burden. The duration of CRS in patients who used G-CSF was longer. There were no significant differences in response rates at 1 and 3 months after CAR T-cell infusion, as well as overall survival (OS) between the two groups. In conclusion, our results showed that G-CSF administration was not associated with the incidence or severity of CRS in patients with low BM tumor burden, but the incidence of CRS was higher after G-CSF administration in patients with high BM tumor burden. The duration of CRS was prolonged in G-CSF group. G-CSF administration was not associated with the efficacy of CAR T-cell therapy.


Asunto(s)
Síndromes de Neurotoxicidad , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Inmunoterapia Adoptiva/efectos adversos , Estudios Retrospectivos , Síndrome de Liberación de Citoquinas , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Tratamiento Basado en Trasplante de Células y Tejidos
7.
Front Immunol ; 15: 1335932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655265

RESUMEN

Ex vivo genetically-modified cellular immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapies, have generated significant clinical and commercial outcomes due to their unparalleled response rates against relapsed and refractory blood cancers. However, the development and scalable manufacture of these novel therapies remains challenging and further process understanding and optimisation is required to improve product quality and yield. In this study, we employ a quality-by-design (QbD) approach to systematically investigate the impact of critical process parameters (CPPs) during the expansion step on the critical quality attributes (CQAs) of CAR-T cells. Utilising the design of experiments (DOE) methodology, we investigated the impact of multiple CPPs, such as number of activations, culture seeding density, seed train time, and IL-2 concentration, on CAR-T CQAs including, cell yield, viability, metabolism, immunophenotype, T cell differentiation, exhaustion and CAR expression. Initial studies undertaken in G-Rex® 24 multi-well plates demonstrated that the combination of a single activation step and a shorter, 3-day, seed train resulted in significant CAR-T yield and quality improvements, specifically a 3-fold increase in cell yield, a 30% reduction in exhaustion marker expression and more efficient metabolism when compared to a process involving 2 activation steps and a 7-day seed train. Similar findings were observed when the CPPs identified in the G-Rex® multi-well plates studies were translated to a larger-scale automated, controlled stirred-tank bioreactor (Ambr® 250 High Throughput) process. The single activation step and reduced seed train time resulted in a similar, significant improvement in CAR-T CQAs including cell yield, quality and metabolism in the Ambr® 250 High Throughput bioreactor, thereby validating the findings of the small-scale studies and resulting in significant process understanding and improvements. This study provides a methodology for the systematic investigation of CAR-T CPPs and the findings demonstrate the scope and impact of enhanced process understanding for improved CAR-T production.


Asunto(s)
Reactores Biológicos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Técnicas de Cultivo de Célula/métodos , Activación de Linfocitos
8.
J Transl Med ; 22(1): 384, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659083

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS: This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS: A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS: pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.


Asunto(s)
Lectina 2 Similar a Ig de Unión al Ácido Siálico , Linfocitos T , Humanos , Concentración de Iones de Hidrógeno , Linfocitos T/inmunología , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Proliferación Celular , Técnicas de Cultivo de Célula
9.
Front Immunol ; 15: 1389324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660304

RESUMEN

Chimeric antigen receptor (CAR) -T cell therapy has entered the breakthrough era, characterized by a blend of therapeutic opportunities and challenges. With the integration of genome-editing technology, CAR-T cells will be empowered to become super warriors in eradicating tumor cells and attacking various tumors, including T-cell malignancies and acute myeloid leukemia. Notably, the optimization of CAR-T cells, including efficacy, safety, and manufacturing speed, coupled with other therapeutic strategies such as radiotherapy, hematopoietic stem cell transplantation, small-molecule inhibitors, and bispecific antibodies, could revolutionize the therapeutic landscape of tumors. Consequently, next-generation cellular immunotherapy, including universal CAR-NK cells and synergistic combination approaches, are anticipated to significantly impact cancer treatment in the coming decade. Nevertheless, the failure rates of CAR-T therapy continue to be significant. The challenge lies in determining the optimal combination strategy and identifying reliable and robust biomarkers to effectively select the patients who will derive the greatest benefit from CAR-T therapy. Herein, we highlight recent innovations in CAR-T products, combination strategies and predictive biomarkers of response presented at the 2023 ASH Annual Meeting.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Neoplasias/terapia , Neoplasias/inmunología , Animales , Terapia Combinada , Linfocitos T/inmunología , Congresos como Asunto
10.
Nat Commun ; 15(1): 3371, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643278

RESUMEN

Despite the high therapeutic response achieved with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapy in relapsed and refractory multiple myeloma (R/R MM), primary resistance and relapse exist with single-target immunotherapy. Here, we design bispecific BC19 CAR T cells targeting BCMA/CD19 and evaluate antimyeloma activity in vitro and in vivo. Preclinical results indicate that BC19 CAR specifically recognize target antigens, and BC19 CAR T cells mediate selective killing of BCMA or CD19-positive cancer cells. BC19 CAR T cells also exhibit potent antigen-specific anti-tumor activity in xenograft mouse models. We conduct an open-label, single-arm, phase I/II study of BC19 CAR T cells in 50 patients with R/R MM (ChiCTR2000033567). The primary endpoint was safety. BC19 CAR T cells are well tolerated with grade 3 or higher cytokine release syndrome in 8% of patients and grade 1 neurotoxic events in 4% of patients, which meet the pre-specified primary endpoint. Secondary endpoints include overall response rate (92%), median progression-free survival (19.7 months), median overall survival (19.7 months) and median duration of response (not reached). Our study demonstrates that bispecific BC19 CAR T cells are feasible, safe and effective in treating patients with R/R MM.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Mieloma Múltiple/patología , Inmunoterapia Adoptiva/métodos , Antígeno de Maduración de Linfocitos B , Recurrencia Local de Neoplasia , Antígenos CD19
11.
Cell Transplant ; 33: 9636897241247951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651796

RESUMEN

Hematological toxicity is a severe adverse event (AE) in anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, the pathophysiological mechanism underlying prolonged cytopenia and the relationship between persistent cytopenia, efficacy, and AEs after anti-CD19 CAR T cell therapy are unknown. Therefore, this study explored whether persistent cytopenia after anti-CD19 CAR T cell therapy in patients with R/R DLBCL can predict therapeutic efficacy and AEs. Thirty-eight patients with R/R DLBCL were enrolled in an anti-CD19 CAR T cell therapy clinical trial. Patients received lymphodepleting chemotherapy with fludarabine and cyclophosphamide before CAR T cell therapy. The degree and duration of cytopenia, clinical response, proportion of CAR T cells, interleukin-6 (IL-6) levels, AEs, and follow-up were observed after therapy. Grades 3-4 persistent cytopenia occurred in 14 patients with R/R DLBCL, who recovered 8-18 weeks after CAR T cell infusion. These patients achieved an objective response rate (ORR) for anti-CD19 CAR T cell therapy. In patients who achieved ORR, the incidence of Grades 3-4 persistent cytopenia was higher in patients with a high tumor load than in those without a high tumor load. The mean peaks of IL-6 and anti-CD19 CAR T cells and the cytokine release syndrome grade in patients with Grades 3-4 persistent cytopenia were higher than those in patients without persistent cytopenia. Anti-CD19 CAR T cells were observed 21 and 28 days after infusion, and patients had Grades 3-4 persistent cytopenia. Progression-free and overall survival were higher in patients with Grades 3-4 persistent cytopenia than in those without cytopenia. Therefore, persistent cytopenia after anti-CD19 CAR T cell therapy in patients with R/R DLBCL can predict therapeutic efficacy and AEs, allowing clinicians to determine the efficiency of CD-19 CAR T cell therapy and the associated AEs.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/terapia , Masculino , Femenino , Persona de Mediana Edad , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Adulto , Antígenos CD19/metabolismo , Anciano , Receptores Quiméricos de Antígenos/uso terapéutico , Adulto Joven , 60427
12.
Cells ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667277

RESUMEN

Acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL) are hematological malignancies with high incidence rates that respond relatively well to conventional therapies. However, a major issue is the clinical emergence of patients with relapsed or refractory (r/r) NHL or ALL. In such circumstances, opportunities for complete remission significantly decline and mortality rates increase. The recent FDA approval of multiple cell-based therapies, Kymriah (tisagenlecleucel), Yescarta (axicabtagene ciloleucel), Tecartus (Brexucabtagene autoleucel KTE-X19), and Breyanzi (Lisocabtagene Maraleucel), has provided hope for those with r/r NHL and ALL. These new cell-based immunotherapies use genetically engineered chimeric antigen receptor (CAR) T-cells, whose success can be attributed to CAR's high specificity in recognizing B-cell-specific CD19 surface markers present on various B-cell malignancies and the subsequent initiation of anti-tumor activity. The efficacy of these treatments has led to promising results in many clinical trials, but relapses and adverse reactions such as cytokine release syndrome (CRS) and neurotoxicity (NT) remain pervasive, leaving areas for improvement in current and subsequent trials. In this review, we highlight the current information on traditional treatments of NHL and ALL, the design and manufacturing of various generations of CAR T-cells, the FDA approval of Kymriah, Yescarta Tecartus, and Breyanzi, and a summary of prominent clinical trials and the notable disadvantages of treatments. We further discuss approaches to potentially enhance CAR T-cell therapy for these malignancies, such as the inclusion of a suicide gene and use of FDA-approved drugs.


Asunto(s)
Antígenos CD19 , Neoplasias Hematológicas , Inmunoterapia Adoptiva , Linfocitos T , Humanos , Antígenos CD19/inmunología , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología , Linfocitos T/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos B/inmunología , Inmunoterapia/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo
13.
J Immunol Methods ; 528: 113667, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574803

RESUMEN

Chimeric antigen receptor (CAR) redirected T cells are successfully employed in the combat against several hematological malignancies, however, are often compromised by low transduction rates making refinement of the CAR T cell products necessary. Here, we report a broadly applicable enrichment protocol relying on marking CAR T cells with an anti-glycine4-serine (G4S) linker antibody followed by magnetic activated cell sorting (MACS). The protocol is broadly applicable since the G4S peptide is an integral part of the vast majority of CARs as it links the VH and VL recognition domains. We demonstrate the feasibility by using the canonical second generation CARs specific for CEA and Her2, respectively, obtaining highly purified CAR T cell products in a one-step procedure without impairing cell viability. The protocol is also applicable to a dual specific CAR (tandem CAR). Except for CD39, T cell activation/exhaustion markers were not upregulated after separation. Purified CAR T cells retained their functionality with respect to antigen-specific cytokine secretion, cytotoxicity, and the capacity to proliferate and eliminate cognate tumor cells upon repetitive stimulation. Collectively, the one-step protocol for purifying CAR T cells extends the toolbox for preclinical research and specifically for clinical CAR T cell manufacturing.


Asunto(s)
Receptores Quiméricos de Antígenos , Linfocitos T , Citotoxicidad Inmunológica , Separación Celular , Fenómenos Magnéticos , Inmunoterapia Adoptiva/métodos
15.
J Clin Invest ; 134(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618954

RESUMEN

Cell and antibody therapies directed against surface molecules on B cells, e.g., CD19-targeting chimeric antigen receptor T cells (CD19 CAR-T), are now standard for patients with chemorefractory B cell acute lymphoblastic leukemias and other B cell malignancies. However, early relapse rates remain high. In this issue of the JCI, Aminov, Giricz, and colleagues revealed that leukemia cells resisting CD19-targeted therapy had reduced CD19 but also low CD22 expression and were sensitive to Bruton's tyrosine kinase and/or MEK inhibition. Overall, their observations support the evolution of resistance following a Lamarckian model: the oncotherapy directly elicits adaptive, resistance-conferring reconfigurations, which are then inherited by daughter cells as epigenetic changes. The findings prompt reflection also on the broader role of epigenetics in decoupling of replication from lineage differentiation activation by the B cell lineage master transcription factor hub. Such oncogenesis and resistance mechanisms, being predictable and epigenetic, offer practical opportunities for intervention, potentially non-cross-resistant and safe vis-à-vis present cytotoxic and CAR-T treatments.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Proteínas Adaptadoras Transductoras de Señales , Agammaglobulinemia Tirosina Quinasa , Antígenos CD19 , Linfocitos B
16.
Biochem Biophys Res Commun ; 710: 149918, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38598902

RESUMEN

Chimeric antigen receptor (CAR)-modified immune cells have emerged as a promising approach for cancer treatment, but single-target CAR therapy in solid tumors is limited by immune escape caused by tumor antigen heterogeneity and shedding. Natural killer group 2D (NKG2D) is an activating receptor expressed in human NK cells, and its ligands, such as MICA and MICB (MICA/B), are widely expressed in malignant cells and typically absent from healthy tissue. NKG2D plays an important role in anti-tumor immunity, recognizing tumor cells and initiating an anti-tumor response. Therefore, NKG2D-based CAR is a promising CAR candidate. Nevertheless, the shedding of MICA/B hinders the therapeutic efficacy of NKG2D-CARs. Here, we designed a novel CAR by engineering an anti-MICA/B shedding antibody 1D5 into the CAR construct. The engineered NK cells exhibited significantly enhanced cytotoxicity against various MICA/B-expressing tumor cells and were not inhibited by NKG2D antibody or NKG2D-Fc fusion protein, indicating no interference with NKG2D-MICA/B binding. Therefore, the developed 1D5-CAR could be combined with NKG2D-CAR to further improve the obstacles caused by MICA/B shedding.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales , Neoplasias/metabolismo , Línea Celular Tumoral
17.
J Exp Clin Cancer Res ; 43(1): 95, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561797

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS: We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS: We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS: Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Inmunoterapia , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral
19.
Rev Med Suisse ; 20(868): 688-693, 2024 Apr 03.
Artículo en Francés | MEDLINE | ID: mdl-38568061

RESUMEN

Cellular therapy using genetically modified T lymphocytes expressing synthetic receptors, known as CAR (Chimeric Antigen Receptor), has revolutionized the treatment of certain hematologic malignancies. This success has led to exploring the same approach in the treatment of severe autoimmune diseases refractory to conventional therapies. Initial results in systemic lupus erythematosus have shown complete remissions that appear to persist over time. Consequently, there is a growing number of ongoing clinical trials. In this review, we discuss the rationale behind the use of CAR-T therapies, the targeted autoimmune diseases, and the associated risks.


La thérapie cellulaire à base de lymphocytes T génétiquement modifiés exprimant des récepteurs synthétiques ou CAR (récepteur antigénique chimérique) a révolutionné le traitement de certaines maladies hémato-oncologiques. Ce succès a conduit à l'exploration de la même approche dans le traitement de maladies auto-immunes sévères et réfractaires aux thérapies conventionnelles. Les premiers résultats obtenus dans le lupus érythémateux systémique ont montré des rémissions complètes semblant persister dans le temps. Nous assistons donc actuellement à une prolifération importante d'essais cliniques. Dans cet article, nous abordons le rationnel derrière l'utilisation des thérapies CAR-T, les maladies auto-immunes ciblées, mais aussi les risques associés.


Asunto(s)
Enfermedades Autoinmunes , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , Enfermedades Autoinmunes/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , 60410
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...